
978-1-6654-5950-1/22/$31.00 ©2022 IEEE

Customizing the CVA6 RISC-V Core to Integrate
Posit and Quire Instructions

David Mallasén
Facultad de Informática

Universidad Complutense de Madrid
28040 Madrid, Spain
0000-0002-0166-834X

Raul Murillo
Facultad de Ciencias Fı́sicas

Universidad Complutense de Madrid
28040 Madrid, Spain
0000-0003-0204-0797

Alberto A. Del Barrio
Facultad de Informática

Universidad Complutense de Madrid
28040 Madrid, Spain
0000-0002-6769-1200

Guillermo Botella
Facultad de Informática

Instituto de Tecnologı́a del Conocimiento
Universidad Complutense de Madrid

28040 Madrid, Spain
0000-0002-0848-2636

Luis Piñuel
Facultad de Ciencias Fı́sicas

Universidad Complutense de Madrid
28040 Madrid, Spain

0000-0002-3049-828X

Manuel Prieto-Matias
Facultad de Informática

Instituto de Tecnologı́a del Conocimiento
Universidad Complutense de Madrid

28040 Madrid, Spain
0000-0003-0687-3737

Abstract—The posit representation for real numbers, aka
Unum-v3, is an alternative to substitute the IEEE 754 standard
and thus mitigate the inherent problems to the construction of
floating-point numbers. Nonetheless, posits are not standard yet,
and previously there was no approach, neither academically nor
industrially, which implemented a fully compliant core for de-
ploying this novel format. Recently, the open-source PERCIVAL
posit RISC-V core was presented as the first work that fully
integrates posit arithmetic and quire capabilities into hardware.
In addition, Xposit, a RISC-V extension for posit operations
allows for the compilation of C programs with inline assembly
posit and quire instructions. As a study platform, PERCIVAL
is based on the CVA6 core and has support for both posit
and IEEE 754 formats, further permitting the comparison of
these representations. This paper details the microarchitecture
of the Posit Arithmetic Unit with quire added to this core.
It also describes how to perform the necessary additions and
modifications to the CVA6 core to add support for the Xposit
RISC-V custom extension. Furthermore, FPGA synthesis results
highlight the cost of including support for both posits with quire
and IEEE 754 formats. This is done by breaking down the area
resources needed for every arithmetic configuration.

Index Terms—Arithmetic, Posit, IEEE 754, Floating-Point,
RISC-V, CPU

I. INTRODUCTION

Real numbers, as a superset of integer numbers, present
unique challenges when dealing with them in a CPU. The
IEEE 754 floating-point standard [1] is the most widespread
representation that tackles this problem. However, it is not
the only option. Posit arithmetic [2] was introduced as an
alternative to represent and operate with real numbers on a
computer. This novel arithmetic tries to solve some of the

This work was supported by grant PID2021-123041OB-I00 funded by
MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making
Europe”, by a 2020 Leonardo Grant for Researchers and Cultural Creators,
from BBVA Foundation, whose id is PR2003 20/01, and by the CM under
grant S2018/TCS-4423.

inherent problems of floats, such as rounding and reproducibil-
ity issues, signed zero, or numerous Not a Number (NaN)
representations.

Nevertheless, posits are not yet fully studied and, until
recently, there was no approach, neither academically nor
industrially, that implements posits and quire into a CPU.
The open-source posit PERCIVAL [3] core1 is presented as
a solution to the performance barriers found by previous
works [4]–[6]. PERCIVAL is based on the application-level
CVA6 [7] RISC-V core. It has full support for 32-bit posits
with a 512-bit quire accumulation register. Furthermore, it also
includes CVA6’s Floating-Point Unit (FPU), thus providing
a solution in which both arithmetics can coexist. Therefore,
PERCIVAL is a prime platform in which to compare posits
and IEEE 754 floats.

In this work, we detail the microarchitecture of the Posit
Arithmetic Unit (PAU) in PERCIVAL, as well as the design
choices and adaptations done when including this PAU into
the CVA6. To have a fully native posit implementation, in
addition to the PAU, PERCIVAL also includes a posit register
bank in parallel with the floating-point and general-purpose
registers. A Field-Programmable Gate Array (FPGA) synthesis
evaluation of the different arithmetic configurations that can
occur in PERCIVAL is also given. Highlighting the resource
cost of the PAU, and especially the large quire register.

The rest of the paper is organized as follows: Section II
introduces some background knowledge about the RISC-V
Instruction Set Architecture (ISA), the CVA6 core, and posit
arithmetic. Then, Section III presents some related work re-
garding previous attempts at implementing posits in hardware.
The PAU design is described in Section IV before introducing
the detailed modifications to the CVA6 core in Section V. Sec-

1https://github.com/artecs-group/PERCIVAL

tion VI provides an FPGA synthesis evaluation of PERCIVAL.
Finally, Section VII concludes this paper.

II. BACKGROUND

A. RISC-V

The RISC-V ISA [8] is a booming open-source architecture
that started its development at UC Berkeley in 2010. It is a
free and open standard that has attracted the worldwide interest
of both academia and industry. RISC-V follows a modular
approach that emanates from the ideas of Reduced Instruction
Set Computers (RISCs). It is comprised of a base integer
ISA that can be complemented with a set of standard and
non-standard optional extensions. The two main base integer
ISAs (RV32I and RV64I) establish the user address space
as 32-bit or 64-bit. Then, each of the extensions adds some
specialized functionality to the base, which is formed by only
40 instructions. This allows to fine-tune the needs of each
platform, thus spanning all the range from microcontrollers to
data centers.

The most common RISC-V standard extensions are the
following:

• Integer multiply and divide (M);
• Atomic memory operations (A);
• Single-precision IEEE 754 floating-point (F);
• Double-precision IEEE 754 floating-point (D).

These general-purpose standard extensions (IMAFD), together
with the instruction-fetch fence (Zifencei), and the control
and status register (Zicsr), are abbreviated as G. This allows
to summarize the set of extensions needed for broad-range
general computing. All extensions have 32-bit fixed-length
instructions. However, the C standard extension includes 16-
bit instructions.

RISC-V defines many other standard extensions. Nonethe-
less, it also provides a way to integrate customized non-
standard extensions. This allows a great amount of flexibility
to developers, which can simply add their own extension to the
ecosystem. These non-standard extensions occupy the opcode
spaces that are left unused for them. In this work, we will
use the Xposit custom extension that adds posit arithmetic
functionality following the modifications to the F extension
proposed by the inventor of posits [9]. This custom extension
was presented together with the PERCIVAL core in [3].

B. CVA6

The CVA6 [7] core is one of the most prominent open-
source application-class RISC-V core [10]. It originated in the
PULP platform with the name Ariane, and since then it has
been transferred to the OpenHW Group. CVA6 has a bright
future, as it is experiencing an ongoing industrial-grade pre-
silicon verification. CVA6 is written in SystemVerilog and is
licensed under an open-source Solderpad Hardware License.

The CVA6 is a 6-stage, in-order, single-issue core that im-
plements the RV64GC RISC-V extensions. It is an application-
class core because it implements three privilege levels and can
run a Linux operating system. The CVA6 SDK [11] contains

a Buildroot [12] image to cross-compile an embedded Linux
system.

Its execution phase contains an integer Arithmetic Logic
Unit (ALU), a multiply/divide unit compliant with the RISC-V
M extension, and an IEEE 754 FPU [13] that implements the
RISC-V F and D extensions. Its FPU, called FPnew, claims
to be IEEE 754-2008 compliant, except for some issues in the
division and square root operations.

C. Posit Arithmetic

The posit number format, according to its latest specifi-
cation [14], defines a posit configuration from its total bit-
width n. One of the main benefits of posit arithmetic is that
it does not have a variety of special cases that have to be
checked. Posits have only two special cases. The value zero is
represented as 0 · · ·0, and the Not-a-Real (NaR) is represented
as 10 · · ·0. The rest of the bit patterns are composed of the
four fields shown in Figure 1.

Fig. 1. Posit format with sign, regime, exponent, and fraction fields.

These four bit-fields are:
• The sign bit S, the value of which is s = 0 if the value

is positive or s = 1 if the value is negative.
• The variable-length regime field R, which consists of a

series of k bits equal to R0 and terminated either by
1 − R0 or the end of the posit. This field represents a
long-range scaling factor r given by:

r =

{
−k if R0 = 0
k − 1 if R0 = 1

• The exponent field E, consisting of at most 2 bits.
This field encodes an integer unbiased value e. Since
the regime field is variable-length, one or both of the
exponent bits may be located after the least significant
bit of the posit. In this case, those bits will have the
value 0.

• The variable-length fraction field F, which is formed by
the m remaining bits. Its value f will be given by dividing
the unsigned integer F by 2m and therefore 0 ≤ f < 1.

From these fields, we can calculate the real value p of a
generic posit as:

p = ((1− 3s) + f)× 2(1−2s)×(4r+e+s).

This is the most efficient decodification of posits, as shown
by [15], [16]. The most notable differences in this value
representation between posit arithmetic and the IEEE 754
floating-point standard are the existence of the variable-length
regime, the use of an unbiased exponent, and the value of the
hidden bits [15]. In floating-point arithmetic, the hidden bit is
fixed to 0 or 1. However, in posit arithmetic it is kept as 1

if the number is positive, or changed to −2 if the number is
negative.

The variable-length regime and fraction fields allow for
more flexibility in the trade-off between accuracy and dynamic
range that can be achieved by a posit. If the regime field
occupies more bits, it represents larger numbers at the cost
of lower accuracy. On the other hand, when the regime field
consists of fewer bits, posits have higher accuracy in the
neighborhoods of ±1.

Posit arithmetic also includes fused operations using the
quire, a 16n-bit fixed-point 2’s complement register. This
special accumulation register allows for the execution of up to
231−1 Multiply-Accumulate (MAC) operations without inter-
mediate rounding or accuracy loss. These operations are very
common when computing dot products, matrix multiplications,
or other more complex algorithms. The additional accuracy
that can be achieved using the quire can allow the execution of
these algorithms with narrower posit configurations [17], [18],
thus avoiding the limits that can occur in memory bandwidth.

Currently, one of the main drawbacks of posit arithmetic is
its higher area cost. For an accurate comparison between posits
and floats, the FPU must be IEEE 754 compliant instead of
being limited to normal floats only. Authors in [19] state that
posit hardware is slightly more expensive than floating-point
hardware that does not take into account subnormal numbers.
Moreover, adding a wide quire accumulator register further
increases the area cost of implementing these fused operations.

III. RELATED WORK

Since the introduction of posits in 2017, there have been
several attempts at developing native hardware for this arith-
metic. PACoGen is a complete arithmetic unit with support
for the four basic math operations that was presented in [20].
It aims to be a fully flexible unit for any combination of bit-
width and number of exponent bits, although it has limitations
for 0-bit exponents.

A VHDL generator written in C++ was used in [21] to de-
velop posit adder/subtractor and multiplier fully-parameterized
units, including 0-bit exponents, and in [22] to develop a posit
logarithm-approximate multiplier for deep learning. Similarly,
fused MAC units presented in [23] are used in this work.

Some previous works have also tackled the task of including
some posit or quire functionality to a RISC-V core. CLAR-
INET [24] includes a quire register into a RV64GC 5-stage
in-order core. Arithmetic operations are executed in IEEE 754
format, as the only posit functionalities added to the core
are fused MAC with quire, fused divide and accumulate with
quire, and conversion instructions. The floating-point values
have to be converted to posit when using the quire.

PERC [25] includes a PAU into the Rocket Chip core to
replace the single- and double-precision floating-point units.
Nonetheless, quire support is not included, as it is not part
of the F and D RISC-V extensions for IEEE-754 floating-
point numbers that authors reuse. More recently, PERI [26]
also introduced a PAU, but in the SHAKTI C-class 5-stage

in-order RV32IMAFC core. This proposal also reuses the F
extension instructions and does not include quire support.

In [27] authors follow a different approach. Posits are
used as a representation format when storing real numbers in
memory using a lower bit-width. Then, the computations are
performed using an IEEE 754 FPU, converting back and forth
the values when accessing the memory. They also leverage
the CVA6 core, and include a light posit processing unit to
convert between 8- or 16-bit posits and 32-bit IEEE floats.

The research community has also conducted works aimed at
studying the impact of posits in trending technologies such as
Artificial Intelligence (AI) [4]–[6]. All of these works emulate
posits. Thus, they are limited to small neural networks since
their computing capability is limited. However, they have given
insight into how posits can improve the execution of deep
learning.

IV. POSIT ARITHMETIC UNIT

The PAU consists of the posit arithmetic and conversion
modules, and a top-level module that orchestrates the execu-
tion of the instructions (Fig. 2). This top-level module uses a
synchronous handshake interface to transfer the data and read
the control signals. The input valid signal announces that the
input operands are valid. The ready output signal indicates that
the unit can receive a new instruction on the following clock
cycle.

The conversion instructions only span 1 clock cycle. How-
ever, all arithmetic instructions are multi-cycle. Posit mul-
tiplication, approximate division and square root, and quire
rounding require an extra clock cycle. Moreover, posit addition
and subtraction, and quire fused MAC operations will require
2 extra clock cycles. This is controlled by a latency counter
and a small finite-state machine that outputs the ready and
valid signals.

Each input instruction contains the operation it must ex-
ecute, the input operands, and a tag with its transaction
identifier. This tag allows to uniquely identify each entry on
the scoreboard. When signaling the output of each instruction,
besides setting the output data, the PAU must also tag this
result with its corresponding transaction identifier.

As can be seen in the PAU diagram of Fig. 2, fused
operations make use of the quire accumulator register. In our
design, this 512-bit register is allocated internally in the PAU
and cannot be accessed directly by the programmer as pro-
posed in [9]. This compromise does not limit substantially the
computational capabilities of our core and keeps its hardware
cost in check.

V. CVA6 MODIFICATIONS

The CVA6 core has served as the base platform in which
to integrate the posit arithmetic and quire capabilities. The
main objective has been to maintain the compatibility between
the existing operations and the new functionality. Thus, some
modules have been added and others extended to include our
new instructions (Fig. 3). This section presents the modifica-
tions to the microarchitecture of the CVA6, the changes to its
datapath, and the code integration.

Fig. 2. Internal structure of the Posit Arithmetic Unit (PAU).

Fig. 3. Summary of the modifications to the CVA6 datapath. Extended modules are highlighted in green.

A. Microarchitecture Modifications

The first module that was extended was the decoder. To
recognize the new posit and quire instructions, it must know
their opcodes. Since the new instructions leverage the Custom-
0 opcode space, this is the first comparison performed in
the decoder. Then, the different types of instructions are
distinguished.

The R-type instructions have the value of funct3=000.
Each of these instructions will then be selected according to
its funct7 field. The I and R-type instructions corresponding
to the loads and stores each use a different funct3 pattern.
The rest of their fields are allocated to register numbers or
immediate values.

The CVA6 core contains a scoreboard structure that acts as
a Re-Order Buffer (ROB) by tracking: the issued instructions,
what functional unit will execute them, and to what register
they will write back. It allows the dynamic scheduling of
instructions and out-of-order write-back of the functional units.

This scoreboard has been adapted to include the posit regis-
ters and instructions. Therefore, the datapath can anticipate
whether the input data for posit operations will come from a
register or will be forwarded directly as the result of a previous
operation.

The integer ALU has been extended to also perform posit
comparisons. Posit numbers behave exactly like two’s com-
plement integers regarding their comparison, so the integer
hardware can be reused for this purpose. This is one of the
implementation advantages of posit arithmetic. Therefore, we
only had to sign-extend the input operands (since the CVA6
has a 64-bit datapath), include the posit operations that the
ALU must recognize, and add a multiplexer to perform the
minimum and maximum operations.

Furthermore, we added the Posit Arithmetic Unit (PAU)
described in Section IV in parallel to the ALU and the FPU.
It is located in the execution phase of the core pipeline,
connecting the issue module with the scoreboard.

A new posit register file has been added to the CVA6 in
parallel with the general-purpose registers and the floating-
point registers. This new register file contains a set of 32
registers for posit32 values. Its interconnections with the
datapath include read and write control signals as well as
output data redirection to the input of the PAU.

Memory loads and stores of posit values are also supported
natively. We have extended the functionality of the integer and
floating-point load/store unit to include the new posit register
file. Currently, this only includes 32-bit posit words, but it
could be customized for any other size from a single byte up
to 64-bits.

Finally, the datapath has been expanded to include posit
control signals and additional interconnections in the issue,
execution, and commit stages.

B. Code integration

The PAU is integrated into the datapath of the CVA6 in
parallel to the IEEE 754 FPU. The required input and output
ports are connected to the top-level module of the PAU,
written in SystemVerilog as the rest of the core. However,
a VHDL generator written in C++ was used to generate the
posit execution units. Consequently, they must be assimilated
with the rest of the code.

The QuestaSim simulation tool, the Vivado FPGA synthesis
tool, and the Synopsys DC Application-Specific Integrated
Circuit (ASIC) synthesis tool allow for the integration of
multi-language code. Specifying the appropriate flags when
building the simulation project, or when generating the FPGA
or ASIC sources, permits the seamless combination of the
SystemVerilog and VHDL code. The entity instantiation acts
as the interface between both codes, and the same signals with
the analogous types of each language are connected together.

Both the CVA6 core and our modifications are released un-
der an open-source hardware license: the Solderpad Hardware
License. This is a wraparound to the well-known Apache 2.0
license that extends its coverage to more forms of Intellectual
Property (IP). In fact, its preamble states that the licensee can
treat the work as if the Solderpad Hardware License were the
Apache 2.0 license.

VI. FPGA SYNTHESIS EVALUATION

The PERCIVAL core allows for different configurations
of FPU and PAU with quire. The complete version of the
core supports 32- and 64-bit floating-point numbers and 32-bit
posits with a 512-bit quire. However, any of these arithmetics
can be removed depending on the needs of the final platform.

Synthesis results of PERCIVAL with all possible combina-
tions of FPU and PAU with quire are presented in Table I.
These results provide some insight into the total hardware
cost of a posit and quire enabled CPU. Furthermore, we can
compare the resource usage of posits in contrast to IEEE floats.
Synthesis was executed on Vivado v.2020.2 for a Genesys II
(Xilinx Kintex-7) FPGA with a target frequency of 50MHz.
The critical path of the core does not traverse the PAU, as it
is multi-cycle, so our modifications do not affect the original

frequency of the CVA6 processor. The FPGA is comprised
of 50950 logic slices, which have 4 6-input Lookup Tables
(LUTs) and 8 Flip-flops (FFs) each.

As can be seen from the table, the standalone CVA6 without
any real arithmetic support requires 28950 LUTs and 19579
FFs. This is only 14.2% and 4.8% of the LUTs and FFs
available in the Genesys II FPGA, respectively.

Simply supporting 32-bit floating-point operations takes
up 22% and 10% more resources respectively, which is a
significant increase. However, this is even more significant
with double-precision numbers or 32-bit posits with quire.
Including doubles implies an increase of 40.7% and 20.5%
resources, and for posit32 this ascends to 54.4% and 20.7%.
Adding everything up, PERCIVAL with the F, D, and Xposit
extensions requires 57129 LUTs and 27996 FFs. This corre-
sponds to 28% and 6.8% of the resources available in our
target FPGA, respectively.

All in all, when comparing the PAU with quire with the
FPU, the PAU requires significantly more resources. Other
previous works reported an increase of around 30-35% more
resources when using posit arithmetic when compared to 32-
bit IEEE floats [28]. In PERCIVAL, which also includes the
512-bit quire register, this amounts to tripling the resource
usage of single-precision floats.

Although these results may not seem very satisfactory, the
addition of a large accumulator to remove the computation
error in fused MAC operations provides compelling accuracy
benefits as shown in [3], [23], [24]. Furthermore, contrary to
IEEE floats, the hardware implementation of posit arithmetic
is not yet deeply studied. This is the case of the decoding
and encoding stages of posit numbers. Most previous works
work with posits in sign-magnitude form, whereas recent
studies have shown that a 2’s complement approach is more
efficient [15].

VII. CONCLUSION

In the past years, new emerging floating-point representa-
tions have provided alternatives to the widespread IEEE 754
format. In particular, posit arithmetic has been shown to have
compelling benefits in areas such as machine learning.

The PERCIVAL posit core was recently presented to ad-
vance the native integration of posit arithmetic and quire in
hardware. This work has described the implementation details
of PERCIVAL, an application-level RISC-V core based on the
CVA6. The microarchitecture of the PAU provides insights into
its use, and the modifications to integrate this PAU into the
CVA6 core highlight the versatility of RISC-V. Furthermore,
the hardware cost of synthesizing PERCIVAL into an FPGA
has been shown.

We believe that RISC-V and its open-source ecosystem
provide an excellent platform in which to study new emerging
floating-point arithmetics. Its versatility and robustness allow
for a thorough study of these promising alternatives to the
IEEE 754 standard. Moreover, the adoption of RISC-V by the
industry guarantees that the gap between academic research
and real-world applications is closer than ever.

TABLE I
FPGA SYNTHESIS RESULTS OF PERCIVAL WITH DIFFERENT CONFIGURATIONS OF FPU, MARKED AS F AND D FOR 32- AND 64-BIT NUMBERS

RESPECTIVELY, AND 32-BIT PAU WITH QUIRE.

PAU No PAU

F D FD - F D FD -

Total core
(LUT, FF) (50318, 25727) (55900, 27652) (57129, 27996) (44693, 23636) (35402, 21618) (40740, 23599) (41260, 23945) (28950, 19579)

FPU area
(LUT, FF) (3726, 1008) (6352, 1905) (7612, 2245) - (4046, 973) (6626, 1905) (8163, 2244) -

PAU area
(LUT, FF) (11796, 2979) (11810, 2979) (11803, 2979) (11879, 2985) - - - -

REFERENCES

[1] IEEE Computer Society, “IEEE Standard for Floating-Point Arithmetic,”
IEEE Std 754-2019 (Revision of IEEE 754-2008), pp. 1–84, Jul. 2019.

[2] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at
its own game: Posit arithmetic,” Supercomputing Frontiers and
Innovations, vol. 4, no. 2, pp. 71–86, Apr. 2017. [Online]. Available:
https://superfri.org/index.php/superfri/article/view/137

[3] D. Mallasén, R. Murillo, A. A. Del Barrio, G. Botella, L. Piñuel, and
M. Prieto, “PERCIVAL: Open-Source Posit RISC-V Core with Quire
Capability,” arXiv:2111.15286 [cs], Nov. 2021. [Online]. Available:
http://arxiv.org/abs/2111.15286

[4] R. Murillo, A. A. Del Barrio, and G. Botella, “Deep PeNSieve: A
deep learning framework based on the posit number system,” Digital
Signal Processing, vol. 102, p. 102762, Jul. 2020. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S105120042030107X

[5] G. Raposo, P. Tomás, and N. Roma, “Positnn: Training Deep Neural
Networks with Mixed Low-Precision Posit,” in ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Jun. 2021, pp. 7908–7912.

[6] H. F. Langroudi, V. Karia, Z. Carmichael, A. Zyarah, T. Pandit,
J. L. Gustafson, and D. Kudithipudi, “Alps: Adaptive Quantization of
Deep Neural Networks with GeneraLized PositS,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). Nashville, TN, USA: IEEE, Jun. 2021, pp. 3094–3103.
[Online]. Available: https://ieeexplore.ieee.org/document/9522706/

[7] F. Zaruba and L. Benini, “The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp.
2629–2640, Nov. 2019. [Online]. Available: https://ieeexplore.ieee.org/
document/8777130/

[8] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The
RISC-V instruction set manual, volume I: User-level ISA, version
2.0,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[9] J. L. Gustafson, “RISC-V Proposed Extension for 32-bit Posits,” Jun.
2018. [Online]. Available: https://posithub.org/docs/RISC-V/RISC-V.
htm

[10] A. Dörflinger, M. Albers, B. Kleinbeck, Y. Guan, H. Michalik, R. Klink,
C. Blochwitz, A. Nechi, and M. Berekovic, “A comparative survey
of open-source application-class RISC-V processor implementations,”
in Proceedings of the 18th ACM International Conference on
Computing Frontiers, ser. CF ’21. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 12–20. [Online]. Available:
https://doi.org/10.1145/3457388.3458657

[11] “CVA6 SDK,” OpenHW Group, Apr. 2022. [Online]. Available:
https://github.com/openhwgroup/cva6-sdk

[12] “Buildroot.” [Online]. Available: https://buildroot.org/
[13] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “FPnew: An Open-Source

Multiformat Floating-Point Unit Architecture for Energy-Proportional
Transprecision Computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 4, pp. 774–787, Apr. 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9311229/

[14] Posit Working Group, “Standard for Posit Arithmetic (2022),” Feb. 2022.
[Online]. Available: https://posithub.org/docs/posit\ standard-2.pdf

[15] R. Murillo, D. Mallasén, A. A. Del Barrio, and G. Botella, “Comparing
Different Decodings for Posit Arithmetic,” in Conference on Next
Generation Arithmetic (CoNGA), 2022.

[16] Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the Hardware
Cost of the Posit Number System,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL).
Barcelona, Spain: IEEE, Sep. 2019, pp. 106–113. [Online]. Available:
https://ieeexplore.ieee.org/document/8892116/

[17] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar,
K. Niyogi, F. Merchant, and R. Leupers, “Parameterized Posit Arithmetic
Hardware Generator,” in 2018 IEEE 36th International Conference on
Computer Design (ICCD), Oct. 2018, pp. 334–341.

[18] M. Klöwer, P. D. Düben, and T. N. Palmer, “Posits as an alternative
to floats for weather and climate models,” in Proceedings of
the Conference for Next Generation Arithmetic 2019. Singapore
Singapore: ACM, Mar. 2019, pp. 1–8. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3316279.3316281

[19] A. Guntoro, C. De La Parra, F. Merchant, F. De Dinechin,
J. L. Gustafson, M. Langhammer, R. Leupers, and S. Nambiar,
“Next Generation Arithmetic for Edge Computing,” in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE).
Grenoble, France: IEEE, Mar. 2020, pp. 1357–1365. [Online].
Available: https://ieeexplore.ieee.org/document/9116196/

[20] M. K. Jaiswal and H. K.-H. So, “PACoGen: A Hardware Posit Arith-
metic Core Generator,” IEEE Access, vol. 7, pp. 74 586–74 601, 2019.

[21] R. Murillo, A. A. Del Barrio, and G. Botella, “Customized Posit Adders
and Multipliers using the FloPoCo Core Generator,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), Oct. 2020,
pp. 1–5.

[22] R. Murillo, A. A. Del Barrio Garcia, G. Botella, M. S. Kim, H. Kim, and
N. Bagherzadeh, “PLAM: A Posit Logarithm-Approximate Multiplier,”
IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2021.

[23] R. Murillo, D. Mallasén, A. A. Del Barrio, and G. Botella, “Energy-
Efficient MAC Units for Fused Posit Arithmetic,” in 2021 IEEE 39th
International Conference on Computer Design (ICCD), Oct. 2021, pp.
138–145.

[24] N. Sharma, R. Jain, M. Mohan, S. Patkar, R. Leupers, N. Rishiyur,
and F. Merchant, “CLARINET: A RISC-V Based Framework for Posit
Arithmetic Empiricism,” arXiv:2006.00364 [cs], Oct. 2021. [Online].
Available: http://arxiv.org/abs/2006.00364

[25] M. V. Arunkumar, S. G. Bhairathi, and H. G. Hayatnagarkar, “PERC:
Posit Enhanced Rocket Chip,” in 4th Workshop on Computer Architec-
ture Research with RISC-V (CARRV’20), 2020, p. 8.

[26] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, “PERI: A
Configurable Posit Enabled RISC-V Core,” ACM Transactions on
Architecture and Code Optimization, vol. 18, no. 3, pp. 1–26, Jun.
2021. [Online]. Available: https://dl.acm.org/doi/10.1145/3446210

[27] M. Cococcioni, F. Rossi, E. Ruffaldi, and S. Saponara, “A Lightweight
Posit Processing Unit for RISC-V Processors in Deep Neural
Network Applications,” IEEE Transactions on Emerging Topics in
Computing, no. 01, pp. 1–1, Oct. 2021. [Online]. Available: https:
//www.computer.org/csdl/journal/ec/5555/01/09583876/1xSHUPCCvlu

[28] S. D. Ciocirlan, D. Loghin, L. Ramapantulu, N. Tapus, and Y. M. Teo,
“The Accuracy and Efficiency of Posit Arithmetic,” arXiv:2109.08225
[cs], Sep. 2021. [Online]. Available: http://arxiv.org/abs/2109.08225

